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Abstract
The theory of the linear optical response of excitons in quantum wells and
polaritons in planar semiconductor microcavities is reviewed, in the light of
the existing experiments. For quantum well excitons, it is shown that disorder
mainly affects the exciton centre-of-mass motion and is modelled by an effective
Schrödinger equation in two dimensions. For polaritons, a unified model
accounting for quantum well roughness and fluctuations of the microcavity
thickness is developed. Numerical results confirm that polaritons are mostly
affected by disorder acting on the photon component, thus confirming existing
studies on the influence of exciton disorder. The polariton localization length
is estimated to be in the few-micrometres range, depending on the amplitude of
disorder, in agreement with recent experimental findings.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Planar semiconductor heterostructures are unavoidably characterized by structural defects
arising in the fabrication process. This disorder affects the optical response of the lowest-
lying excited states, particularly the exciton. Although initially disorder was considered an
unwanted feature [1], in the light of the study of ideal systems of lower dimensionality, later
it was realized that it might induce new behaviours and essentially open the way to the study
of fundamental effects and to possible applications [2]. In particular, disorder breaks the in-
plane translational symmetry and can lead to a dramatic change in the physical behaviour
of the interband excitations, producing multiple scattering and localization. This behaviour
has several implications in the optical response of the system. In particular, it produces an
inhomogeneous spectral broadening that is often used as a figure of merit of the interface
quality.
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Disorder in heterostructures and its influence on the exciton optical response have been a
topic of intense research in the last two decades [2]. In addition to inhomogeneous spectral
broadening, in fact, disorder in heterostructures leads to several manifestations of fundamental
quantum physics of disorder, that have been over the years one of the main motivations for these
studies. In quantum wells (QWs) in particular, the exciton motion subject to weak disorder
is an almost ideal physical realization of a particle obeying the Schrödinger equation in the
presence of a two-dimensional static disorder potential. Its optical response provides direct
access to the eigenstates of the exciton motion, and is an excellent mean for studying the
physics of Anderson localization. Apart from the fundamental implications of these studies,
a more practical motivation resides in the possibility of an accurate characterization of the
interface structure, giving access to information complementary to that obtained by means of
microscopy techniques.

More recently, the influence of heterointerface disorder on exciton–polaritons in
semiconductor microcavities (MCs) was also investigated [3–13]. In this system, the
fundamental excitations are the two-dimensional analogues of bulk polaritons, namely normal
modes of the linear coupling between excitons in a QW and the electromagnetic mode of a
planar resonator [14–16]. Most of the existing theoretical studies have concentrated on the
influence of QW disorder on polaritons [7, 8, 11–13], with the conclusion that polaritons are
almost unaffected by QW disorder provided that the amplitude of the energy fluctuations is
sufficiently smaller than the Rabi energy characterizing the linear exciton–photon coupling.
Some experiments [4, 9, 5, 6] have recently suggested that disorder at the MC interfaces
might affect the polariton quasi-particle even more than QW disorder, through its influence
on the spectral properties of the resonant electromagnetic mode. In particular, unambiguous
signatures of long range defects characterizing the MC interfaces appear in the angular pattern
of resonantly scattered light. These measurements even suggest that polaritons can undergo
localization in the same way as excitons, however over a much larger spatial range, of the order
of a few micrometres.

There have been many theoretical studies of the influence of QW disorder on the optical
response of excitons. These studies have been recently reviewed by Zimmermann et al [2]
in a very comprehensive manner. The influence of disorder on polaritons has received less
attention in the past. In particular, theoretical studies have principally addressed the effect of
QW disorder while completely overlooking the role of disorder acting on the photon component
of polaritons [7, 8, 11–13].

Here, I will give an overview of the influence of disorder on excitons and polaritons in
heterostructures. In the first part, I will briefly review the basic properties of QW excitons in
presence of weak disorder. This review is only meant to introduce the main physical aspects
that are later important in the context of MC polaritons. A more comprehensive review is the
one by Zimmermann et al [2]. In the second part, I will discuss the present status of the research
on the effect of disorder on MC polaritons. In this context, I will present some original results
stemming from the numerical analysis of a model that accounts both for the exciton and the
photon components of disorder. This preliminary analysis clarifies the mutual roles of exciton
and photon disorder, and confirms the first experimental evidence that photon disorder has the
strongest influence on polaritons. It also provides a first estimate of the polariton localization
length, which ranges from a few micrometres to a few tens of micrometres in typical samples.

2. Quantum well excitons

Disorder in QWs has mainly two origins. First, the height fluctuations of the QW interfaces,
resulting in a variation of the QW thickness. Second, alloy disorder, arising when a
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semiconductor alloy is used but also at an interface between two pure species (e.g. GaAs–
AlAs) due to segregation or interdiffusion of atoms at the interface [17]. Both effects result
in an in-plane fluctuation of the electron and hole confinement energy in the QW. While alloy
disorder is short ranged, interface fluctuations can take place over a correlation length of 10–
100 nm, especially if growth interruption is used [18]. Here, we are mainly interested in
how QW disorder affects the exciton states. QW excitons display inhomogeneous spectral
broadening that was shown by Weisbuch et al [1] to be related to the thickness fluctuations
resulting in a variation of the exciton confinement energy in the QW. By that time it was still
unclear, however, that disorder can affect not only the potential but also the kinetic energy
of the exciton moving along the QW plane. The exciton then behaves as a massive particle
subject to a disordered potential, giving rise to spatially localized eigenstates of the centre of
mass (COM).

The theory of exciton states and their optical properties in disordered QWs has been mainly
developed over the last two decades by Zimmermann. A complete review of this topic is found
in [2]. Here we present a short overview of the basic elements of the theory, highlighting the
aspects that are most relevant to the MC polariton problem, that is addressed in section 3.

In principle, an exciton in a disordered QW is described, within the envelope function
approximation, by a two-particle Schrödinger equation for the electron and the hole in three
dimensions,(

− h̄2

2me
�re − h̄2

2mh
�rh − e2/ε0

|re − rh| + We(re)+ Wh(rh)− εα

)
�α(re, rh) = 0. (1)

The confinement potentials Wa(ra) (a = e, h) describe the spatial variation of the local band
edges. The z-axis is taken along the growth direction. These potentials depend on the band edge
difference between barrier and well material, and contain all information on the QW disorder.
In most QWs of average quality, both based on III–V and II–VI materials, the exciton binding
energy is significantly smaller than the inhomogeneous spectral broadening. This suggests that
disorder has only a weak influence on the electron–hole relative motion in the exciton state. A
more rigorous formulation of this idea can be given in terms of the rigid exciton approximation.
In practice, it is assumed that the perturbation introduced by disorder is not sufficient to produce
a transition from the exciton 1s state to higher states of the relative electron–hole motion.
Hence, the exciton stays always in the 1s state and only its COM motion is affected by disorder.
We make the following factorization ansatz for the exciton wavefunction:

�α(re, rh) = fe(ze) fh(zh)φ1s(ρe − ρh) ψα(R), (2)

where R = (meρe + mhρh)/M is the COM coordinate in two dimensions and M = me + mh

the exciton kinetic mass. Here we take fa(za) and φ1s(ρ) as the solutions of the Schrödinger
equation of an ideally flat QW structure having a confinement potential Wa(z) = Wa(ρ, z)
averaged over the in-plane coordinate. The factorized ansatz (2) is an exact solution of the
Schrödinger equation with the translation-invariant potential Wa(z). We can therefore perform
a first-order perturbation theory with respect to the difference Wa(R, z)− Wa(z). This results
in an effective Schrödinger equation for the COM wavefunction(

− h̄2

2M
∇2 + Vx(R)

)
ψα(R) = εαψα(R), (3)

where the 1s exciton energy h̄ωx of the averaged QW has been set to zero for simplicity. The
normalization relation for the COM wavefunctions over the quantization area A reads∫

A
dRψα(R)ψβ(R) = δα,β . (4)
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The effective COM potential Vx(R) resulting from this approach is

Vx(R) =
∫

dR′ ∑
a=e,h

η2
aφ

2
1s(ηa(R − R′))Ua(R′), (5)

where Ua(R′) represents the electron and hole confinement-energy fluctuations along the QW
plane. This result shows that the effective COM potential derives from the actual energy
fluctuation averaged over the relative e–h motion. Due to the mass factors ηe = M/mh, ηh =
M/me, different weights are given to the electron and the hole contribution. In materials such
as GaAs/AlGaAs, for example, the hole mass is larger and the well width fluctuations are
averaged less efficiently, making the hole contribution dominant in (5). The validity of this rigid
exciton approximation has been checked for typical QWs made of III–V semiconductors [17]
and turns out to provide an extremely good description of the exciton optical response when
the inhomogeneous exciton broadening does not exceed the 1s binding energy.

A microscopic model of the exciton disorder potential would require a detailed knowledge
of the interface structure responsible for the confinement energy fluctuation U(R). This
structure depends dramatically on the growth conditions. For high quality structures made
using growth interruption at both QW interfaces [18], for example, interfaces are characterized
by monolayer steps having size of up to 100 nm and anisotropic shape with a preferential
orientation [19, 20]. In this case, a very detailed model for Vx(R) can be built on the basis
of the experimental observations [18]. In most situations in which growth interruption is not
applied, on the other hand, the correlation length of interface fluctuations is expected to be
shorter. As equation (5) suggests, the short range details of the fluctuating potential U(R) are
smeared out in the convolution with the 1s exciton wavefunction, which extends over a distance
given by the exciton Bohr radius. Then, a reliable model for the effective COM potential Vx(R)
is given in terms of a Gauss-distributed spatially correlated random potential characterized by
the correlation

〈Vx(R)Vx(R′)〉 = σ 2
x f (|R − R′|), (6)

where σx is the standard deviation of the Gauss energy distribution and f (R) is a correlation
function equal to unity at R = 0 and decaying to zero over a correlation length ξx. This simple
disorder model was successful in describing several features of the exciton optical response,
including the level-repulsion in the statistics of energy level distances measured by near-field
optical spectroscopy [21, 22].

We now turn to the problem of modelling the optical response of the eigenstates of
equation (3). For the evaluation of the optical response we derive the optical matrix element
for the transition between the semiconductor ground state and the exciton state (2). The dipole
Hamiltonian reads

Hdip = − e

mc

∑
j

A(r j ) · p j , (7)

where the sum runs over all the electrons, A(r) = A(0)ε exp[i(kzz + k · R)] is the vector
potential for a plane-wave electromagnetic field, and ε is the light polarization direction. Within
the effective-mass and envelope-function approximations, the matrix element for the optical
transition can be shown to result in

〈�α|Hdip|0〉 = ε · μcvφ1s(0)Oeh(kz)

∫
A

dReik·Rψα(R), (8)

with the Bloch part of the matrix element given by the integral over the Brillouin zone

μcv =
∫

BZ
dru∗

v(r)eruc(r), (9)
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Figure 1. (a) Simulated optical density for a single potential realization (solid line) and averaged
over 104 realizations (dotted line). The simulation parameters are σx = 1 meV and ξx = 10 nm.
For the single realization spectrum, a homogeneous linewidth h̄γ = 50 μeV has been introduced.
(b) Simulated optical density for different values of the potential correlation length ξx and σx =
1 meV.

and the z-confinement overlap integral

Oeh(kz) =
∫

dz fe(z) fh(z)e
ikz z. (10)

This latter quantity is practically equal to unity for all typical QW structures and is therefore
omitted in what follows. The optical density is obtained from the Fermi golden rule

D(ω) = 2π

h̄

∑
α

|〈�α|Hdip|0〉|2δ(ω − ωα). (11)

By omitting α-independent prefactors and introducing the Fourier-transformed wavefunction

ψαk =
∫

A
dReik·Rψα(R), (12)

we can rewrite the optical density by weighting with the wavefunction squared at k = 0,

D(ω) = 1

A

∑
α

ψ2
αk=0δ(ω − ωα). (13)

In the context of the COM problem (3), this is the spectral function at zero momentum,
D(ω) = Im Gk=0(ω − i0+), where Gk(y) is the one-particle (disorder-averaged) Green’s
function. More important, D(ω) is proportional to the absorption lineshape of 1s excitons at
normal incidence. In a given potential realization, expression (13) consist of a series of spectral
lines that form the exciton inhomogeneous spectrum (also accounting for a small homogeneous
broadening of each spectral line). Experimentally, a small angular average in the detection
process is always introduced. It can be shown [23] that this average is simulated by performing
a statistical average of the spectrum over a large number of random realizations of the disorder
potential Vx(R). This produces smooth curves, as shown in the simulation in figure 1(a).

The simulated optical density points to the role of quantum mechanics in determining the
exciton COM spectral properties. By rewriting the Schrödinger equation in a dimensionless
fashion [23], the shape of the COM spectral properties depends on a single dimensionless
parameter σx/Ecx, where Ecx = h̄2/(2Mξ 2

x ) is a characteristic confinement energy, given
the potential amplitude σx and its correlation length ξx. In the limit σx/Ecx → ∞ the
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kinetic term in the Schrödinger equation vanishes compared to the potential term. Then,
all the COM eigenstates ψα(R) tend to Dirac-delta functions in real space, and only the
disorder potential determines the particle spectral function. This is the classical limit and
corresponds to the interpretation given by Weisbuch et al [1] for the dependence of the exciton
inhomogeneous broadening on the average QW thickness. For smaller σx/Ecx the kinetic
term becomes important and the spatial extension of the COM eigenstates ψα(R) increases,
implying a further spatial averaging of the disorder potential Vx(R). As a result the particle
spectrum becomes narrower and asymmetric—an effect that has been traditionally called
motional narrowing [17]. The dependence of the optical density spectrum on the dimensionless
parameter σx/Ecx is illustrated in figure 1(b). A scaling argument can be formulated [23],
according to which the inhomogeneous broadening h̄�inh in the quantum limit σx/Ecx 	 1
scales as h̄�inh ≈ σx(σx/Ecx). Hence, in this extreme limit, the influence of disorder on the
particle motion can become vanishingly small. The concept of motional narrowing has been
the subject of intense debate in connection to the system of MC polaritons, as we will discuss
in detail below. In standard QWs based on III–V semiconductors, motional narrowing is of
considerable importance. For example, if σx = 0.3 meV and the correlation length ξx = 10 nm,
then σx/Ecx ≈ 0.3.

A good estimate of the spatial extension of the localized COM states can be obtained via
the participation ratio [24]. The exciton localization length �α of the state ψα(R) is defined
as

�−d
α =

∫
dRψ4

α(r), (14)

where d denotes the dimensionality of the system. The fourth power of the wavefunction
weights the regions where the amplitude is large (the same integral with exponent two is equal
to one because of wavefunction normalization). We recall that, according to Anderson’s scaling
argument [25], all wavefunctions in a two-dimensional system are expected to be localized.
The particle localization length is distributed over a broad range even for a fixed energy, as
the sample calculation in figure 2 shows. Its energy-dependent average displays a dramatic
rise as a function of energy, across the exciton line. As the localization length becomes larger
than the exciton coherence length, this latter then governs the exciton motion, that becomes
diffusive. This explains the occurrence of an exciton mobility edge, which has been the object
of several investigations in the early experiments on QWs [26, 27]. As for the inhomogeneous
broadening, the particle localization length can also be deduced from a scaling argument. In
two dimensions and in the quantum limit σx/Ecx 	 1 in particular, and the localization length
must scale as �α ≈ ξx(Ecx/σx), thus approaching the limit of Anderson localization�α � ξx.

When studying the optical response of excitons in QWs with rough interfaces, the most
important effect of disorder is the resonant Rayleigh scattering (RRS) of light. RRS can
be seen as the sum of the electromagnetic field scattered by all the localized exciton states
when excited resonantly by a light beam. The RRS signal originating from a plane-wave
excitation is emitted in all directions, due to the breaking of in-plane momentum conservation.
It is a coherent scattering, hence it is characterized by speckles, namely intensity fluctuations
over frequency or emission angle that arise from multiple interference of light coming from
all exciton scatterers. The very first experimental studies of RRS [28–30] were aimed at
measuring the exciton homogeneous linewidth that characterizes the RRS spectrum under
monochromatic excitation. Later, the properties of RRS were studied in more detail, showing
that its time dependence could be related to the microscopic nature of the localized exciton
states [2]. In the last decade, in particular, RRS from excitons in QWs was the object of intense
experimental [31–46] and theoretical [47–49, 23, 50, 44] investigation. The RRS signal could
be isolated from the contribution of incoherent photoluminescence to the total light emission
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Figure 2. Exciton COM localization length computed according to equation (14). Simulation
parameters as in figure 1(a). The circles are values for specific COM eigenstates extracted from
simulations of a few disorder realizations. The thick line represents the COM localization length
averaged over 104 disorder realizations. The averaged optical density is plotted as a thin line for
reference.

into non-specular directions (secondary emission) [33, 36], in particular by means of spectral
interferometry [37, 35, 41, 42] and statistical analysis of the speckle pattern [39, 43]. It was also
shown that time-resolved RRS can bring direct evidence for quantum mechanical energy-level
repulsion [23, 45, 51, 50]. Recently, time-resolved RRS was also used together with theoretical
modelling as an efficient tool for studying the details of the QW interface structure [18].

Excitons in disordered QWs represent a typical example of a quantum particle moving
in a disordered landscape, governed by the Schrödinger equation. It is then possible to
investigate many aspects of the fundamental physics of disorder and localization. Anderson
localization [24] was actually observed in near-field measurements [52, 20–22], thanks to the
fact that an optical measurement can probe the bottom of the disorder energy band, in contrast
to transport measurements in metals, where only the effect of disorder on electrons close to
the Fermi energy can be accessed. Recently, in particular, two fundamental phenomena have
been predicted and successively measured in QWs: the statistical distribution of energy levels,
leading to level repulsion [21–23, 53], and the enhanced resonant backscattering [54, 55].
This phenomenon consists in an enhancement of the average scattered intensity within a
cone centred at the backscattered direction k = −kin. It originates from the constructive
interference between each multiple scattering path and its time-reversal inside the scattering
medium [56, 57, 24, 58, 59]. As such, it cannot be accounted for by a finite order perturbation
theory and is considered as a precursor of Anderson localization. In a system showing
localization, in fact, the angular width of the backscattering peak is a measure of the localization
length. Enhanced backscattering was recently predicted and measured for excitons in very high
quality QWs [54, 55].

3. Microcavity polaritons

MC polaritons arise from the normal-mode coupling between an exciton in a QW and the
lowest-frequency electromagnetic mode of a Fabry–Pérot planar resonator in which the QW is
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Figure 3. (a) Schematic structure of a semiconductor MC embedding a QW. The number of layers in
the DBRs as well as the QW thickness are not to scale. The shape of the resonant electromagnetic
mode in the cavity layer is sketched. (b) Energy–momentum dispersion curves of the polariton
modes obtained from (16) assuming zero detuning and � = 2 meV. The thin (blue) lines are the
uncoupled exciton and photon energies Exk and E pk.

embedded [14–16]. For an ideal system without disorder, the in-plane translational symmetry
implies that the in-plane momentum k is a good quantum number. Hence, one exciton with
a given k is linearly coupled to one photon mode having the same k. The simplest way of
modelling the system [60] is in terms of a k-dependent eigenvalue problem

Hk

(
ψpk

ψxk

)
= Ek

(
ψpk

ψxk

)
, (15)

where

Hk =
(

E pk − ih̄γpk
h̄�k

2
h̄�k

2 Exk − ih̄γxk

)
. (16)

Here, k-dependent exciton and photon damping rates γxk and γpk were included. The rates
model, respectively, the photon escape out of the cavity and the possible exciton non-radiative
dissipation mechanisms. The quantities E pk and Exk are the photon and exciton energy–
momentum dispersion relations, while h̄�k is the linear exciton–radiation coupling. Typically,
k-independent coupling constant h̄� and damping rates γp and γx are assumed. Simple analysis
of this eigenvalue problem [60] indicates that, provided the damping rates are sufficiently
smaller than h̄�, strong coupling arises, with normal modes being linear superpositions of
exciton and photon modes, called polaritons. The normal-mode energy splitting, otherwise
named vacuum-field Rabi splitting, is equal to h̄� at the resonance condition E x

0 = E p
0 .

Figure 3(a) illustrates the structure of a semiconductor MC, highlighting the multilayered
mirrors called distributed Bragg reflectors (DBRs). Figure 3(b) shows the upper and lower
polariton dispersion curves, obtained from the diagonalization of (16) at zero exciton–cavity
detuning.

This simple representation is very effective in many experimental situations, mainly as it
reproduces very well the measured polariton energies [61, 6, 62, 63]. Although it assumes
perfectly two-dimensional photon modes, a full three-dimensional treatment of the leakage
through the DBRs [64, 65, 62] gives a microscopic account of the effective photon damping
rate γp. Still, the effective model contains several simplifying assumptions that essentially
limit its predictivity. First, it does not account for the cavity leaky modes, that can be resonant
with the exciton band at finite momentum, modifying the polariton dispersion and altering the
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polariton radiative rate [65, 62]. Second, the polariton non-radiative damping rates have to
be modelled consistently with the steep polariton dispersion, resulting in a suppression of the
damping in the strong coupling region [66–68].

The most important limitation of the coupled oscillator model, however, is its inability to
model disorder effects—basically because it assumes in-plane momentum conservation that is
instead lifted in the presence of disorder. Historically, the problem was brought up in an attempt
to explain the measured inhomogeneous broadening of the MC polariton spectral lines and their
dependence on exciton–cavity detuning [13]. In particular, the coupled oscillator model (15),
only accounting for homogeneous broadening, predicts equal linewidths for upper and lower
polaritons at resonance, given by the average h̄(γp + γx)/2. Experiments instead show that,
at zero detuning, the lower polariton always features a spectral line narrower than that of the
upper polariton. The early theoretical models of polariton inhomogeneous broadening assumed
phenomenologically an energy distribution of exciton resonances, linearly coupled to the cavity
mode [69, 70, 16, 71]. This approach can explain how only a small part of the exciton spectral
density concurs to the formation of polaritons, while the remaining part is weakly coupled to
light and appears as a weak spectral feature at the bare exciton energy. In was then clear that
polariton lines can be much narrower than the bare exciton line. In particular, in the limit
when h̄� � σx � h̄γx the polariton linewidths at zero detuning approach the homogeneous
value h̄(γp + γx)/2 [70]. Still, however, this model predicts equal upper and lower polariton
linewidths at resonance.

We will discuss below how this linear dispersion model can be more rigorously derived
from a microscopic theory in presence of disorder. A very complete account of the implications
of the linear dispersion model is given in the review article by Khitrova et al [15]. Before
proceeding, let us briefly recall that the linear dispersion model was originally introduced by
Zhu et al [72] in connection to the atom-cavity vacuum-field Rabi splitting in atomic physics. In
the atom-cavity case, in fact, it was not clear whether the vacuum-field Rabi splitting, obtained
when a single atom is coupled to the cavity mode, was a purely quantum effect. When N atoms
are present in the cavity, instead, the Rabi splitting increases as

√
N [73, 74]. This increase

is indeed a quantum effect originating from the nonlinearity in the optical response of a two-
level system and modelled by the Jaynes–Cummings Hamiltonian [75]. Zhu et al proved that
in the single-atom case, instead, the vacuum-field Rabi splitting was not a quantum effect and
could simply be explained in terms of the classical response of a Lorentz oscillator. The debate
on the classical versus quantum origin of the Rabi splitting was also started in connection to
MC polaritons shortly after their first observation by Weisbuch et al [63], and is discussed
extensively in the review by Khitrova et al [15].

3.1. Influence of exciton disorder

The effect of disorder on polaritons was first studied in connection to the interpretation of
inhomogeneous polariton spectra, both experimentally [13, 76] and theoretically [13, 11, 12].
All these studies assumed that only disorder of the QW interfaces affects polaritons through
their exciton component. As already pointed out, experiments brought systematic evidence of
a lower polariton line narrower than the upper polariton one.

On the theoretical side, Whittaker et al [13] were the first to study the problem in terms
of in-plane propagation of the exciton subject to a disorder potential acting on its COM.
They suggested that polariton motional narrowing could explain the small inhomogeneous
broadening of the lower polariton at resonance. This conclusion however stems from the
assumption that the polariton is a quasi-particle with a perfect parabolic dispersion, determined
by its effective mass, at all momenta. In particular, in [13] this assumption was used to evaluate
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the polariton linewidth from a scaling argument, that was however applied incorrectly. Correct
use of the scaling argument [12, 8, 7] predicts a polariton inhomogeneous broadening h̄�p

scaling as σ 2
x /Ecx. The correlation energy is here defined as Ecp = h̄2/(2Mpξ

2
x ) in terms

of the polariton effective mass Mp. For typical values of the parameters of a GaAs MC,
vanishingly small values of h̄�p in the range of 10−4 meV are predicted. In reality, the
description of polaritons as quasi-particles with a constant effective mass is inappropriate.
The lower polariton branch, in particular, recovers the curvature of the bare exciton dispersion
outside the strong coupling region, as seen in figure 3(b). The upper polariton, on the other
hand, is resonant with exciton states at large momentum, to which elastic scattering can take
place. In this situation the simple constant mass assumption fails [8, 7] and a microscopic
model is required. Savona et al [11] have computed the polariton broadenings by numerically
solving the exciton COM Schrödinger equation including a disorder potential, linearly coupled
to the cavity mode. The model assumed a one-dimensional system, for which disorder
effects are expected to be quantitatively more relevant than in two dimensions [12], but was
able to qualitatively reproduce the measured dependence of both upper and lower polariton
inhomogeneous linewidths. The interpretation given by Savona et al was that the polariton
inhomogeneous broadening is determined by the multiple scattering processes that, starting
from the initial polariton states, bring us to the exciton-like states at large momentum. The
smaller inhomogeneous broadening of the lower polariton branch is then explained by the
energy separation between the lower polariton at k = 0 and the exciton-like states at large
k. For the upper polariton instead, exciton-like states of the lower polariton branch exist at
the same energy, thus making multiple elastic scattering more effective. This interpretation,
although technically correct, somewhat hides the actual physical origin of the broadening.

A more elegant interpretation was proposed by Whittaker in two seminal papers [12, 77].
In simple words, the exciton–photon scattering is assumed to be momentum conserving, while
disorder acts solely in the bare exciton propagation, resulting in the inhomogeneous energy
distribution of the exciton spectrum. This approximation neglects all multiple scattering
terms that, starting from a photon with momentum k, have intermediate photon states with
momentum k′ = k. The resulting Green’s function of the polariton in-plane motion can be
written as

G(k, ω) = 1

h̄(ω − ωp)+ ih̄γp − (h̄�/2)2Gx(k, ω)
, (17)

where the exciton Green’s function Gx(k, ω) enters as a self-energy contribution to the bare
photon propagator.

This equation is the most complete formulation of the linear dispersion theory. It states
that a momentum-conserving polariton theory including an inhomogeneous energy distribution
correctly describes the polariton spectrum, provided the microscopic model of the exciton
distribution is used. The smaller inhomogeneous broadening of the lower polariton branch
is then simply explained in terms of the longer high energy tail of Gx(k, ω) due to exciton
motional narrowing. The error with respect to a full calculation is given by the polariton
multiple scattering terms, that are vanishingly small as predicted by the polariton motional
narrowing argument. The linear dispersion theory was carefully checked in an experiment by
Ell et al [3], in which Gx(k, ω) was independently determined by measuring the transmission
spectrum of a reference QW fabricated under the same conditions as the MC sample, and
applying Kramers–Kronig relations.

As already discussed, in-plane disorder is not only responsible for spectral broadening.
The breaking of the in-plane translational symmetry still implies momentum non-conservation.
Experimentally, momentum scattering manifests itself in the observation of RRS. Many
experiments were carried out to study polariton RRS [4, 36, 9, 6, 5, 78, 79]. They showed
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that RRS largely dominates over incoherent photoluminescence following inelastic scattering
processes. The theory of polariton RRS can be developed under assumptions analogous to
the linear dispersion theory, as was done by Whittaker [77] and independently by Shchegrov
et al [80]. To model RRS, they considered only the first-order scattering between two
polaritons described by the propagator (17), occurring via scattering of the exciton component
by disorder. This approximation is called the RRS filter model and assumes, in the same spirit
as the linear dispersion theory, that cavity photons are subject to the least possible number of
momentum-changing scattering processes. The model describes the experimental results well
qualitatively [77] and, to a reasonably good extent, quantitatively [6].

Are the linear dispersion and RRS filter models sufficient to model all manifestations
of disorder on MC polaritons? Intuitively, we expect that in MC samples with state-of-the-
art interfaces—especially at large negative cavity-exciton detuning—the spectral density of
the QW exciton is vanishingly small in correspondence to the lower polariton energy. In
such a case, the contribution from the linear dispersion or RRS filter models will eventually
become comparable to the polariton multiple-scattering contribution to the line broadening.
More generally, multiple scattering on disorder gives rise to Anderson localization [24]. It is
therefore very important to investigate polariton localization and estimate the typical polariton
localization length, that might be very large due to the light polariton effective mass. Although
occurring over a long range, localization still might play an important role in some aspects
of polariton physics, such as the possibility of undergoing Bose–Einstein condensation, as we
point out in our conclusions.

If on one hand recent experiments have showed polariton ballistic propagation over several
tens of microns [81, 82], still signatures of polariton localization have undoubtedly been found.
In particular, RRS measurements by Gurioli et al [4], Houdré et al [9], and Langbein et al
[6] have clearly found signatures of enhanced resonant backscattering [56, 57, 24, 59], that
cannot be explained within the single scattering picture. Langbein [6, 5] has also studied the
polariton localization length in a high quality MC, by measuring the momentum spread of
RRS under highly directional pulsed excitation and in the long time limit. A lower bound
to the localization length in this particular sample was set to 30 μm. Further evidence of
polariton localization over the micrometre scale was recently provided by Gurioli et al [83],
who characterized the angular width of the enhanced resonant backscattering peak in an MC.
Their experimental data suggest that the polariton mean free path is of the order of 10 μm.
Finally, in a recent photoluminescence measurement by Richard et al [84] under high excitation
density and spatial resolution, the polariton population build-up in the lowest energy levels
allowed a direct imaging of the shape of localized eigenstates. Their spatial extension was
about 5–10 μm, consistently with the larger disorder amplitude expected in II–VI samples.
To our knowledge, very few theoretical works studied polariton localization [7], and the only
quantitative theoretical analysis of polariton localization was carried out by Michetti et al [10],
however using a one-dimensional model and considering Frenkel excitons in organic materials,
thus characterized by a large disorder amplitude. Their conclusion is that the polaritons are
localized over 1 μm in this particular system.

Another important fact that has been well established in several experimental works
concerns the role of disorder in the cavity structure, acting on the photon component. In
particular, Gurioli et al [4] were the first to remark that RRS occurs also in the case of
large negative detuning of the cavity mode with respect to the exciton energy. In this
situation, the exciton component of the involved polaritons is negligible and RRS can only
be explained by assuming a disorder acting on the photon component. Furthermore, all RRS
measurements [4, 9, 6, 5] have brought evidence of a peculiar cross-shaped pattern, centred at
the momentum of the excitation beam, appearing in the momentum plane in addition to the RRS

11



J. Phys.: Condens. Matter 19 (2007) 295208 V Savona

ring. Gurioli et al [4], and Langbein et al [6, 5] have suggested that this is the signature of cross-
hatch disorder at the interfaces of the cavity slab, originating from misfit dislocations oriented
along the two orthogonal crystal axes. It is very remarkable that, despite this clear experimental
evidence, all theoretical analyses of disorder effects on MC polaritons exclusively focused on
excitonic disorder in the QW. Below, we extend the MC polariton model to include disorder
components acting both on the exciton and on the photon degrees of freedom. By computing
numerical solutions of the model equations, we review some of the main issues of polariton
disorder, with special focus on the relevance of exciton and photon disorder, and briefly discuss
the theoretical predictions related to the polariton RRS spectrum and localization.

3.2. Unified model of exciton and photon disorder

We present here a model that accounts both for excitonic and photonic components of disorder.
First, however, some considerations on the disorder correlation length must be made. In an
epitaxially grown structure we expect structural disorder on a wide range of length scales.
On the shortest atomic scale, disorder is caused by segregation of one material into the
other and by alloy fluctuations in the case when a semiconductor alloy is used. On a longer
length scale, typically of 10–100 nm, epitaxial growth causes the formation of monolayer-step
fluctuations, whose lateral extension and amplitude can be only partially controlled by growth
interruption [18]. Finally, the intrinsic properties of molecular beam epitaxy can produce
fluctuations on a length scale above 1 μm [85]. It was however shown that in QWs the long
and medium range interface fluctuations are almost fully correlated between the direct and
the inverse interface [18]. Thus, long range variations of the QW thickness will take place
over a very long scale, practically not affecting the exciton COM motion. The medium range
component, on the other hand, produces a QW thickness fluctuation only due to the different
correlation lengths of the two QW interfaces [18]. Finally, the short range component also has
a contribution that is however partly averaged over the electron–hole relative wavefunction, as
seen previously [2]. In addition, motional narrowing reduces the influence of medium and short
range contributions in the white noise limit σx/Ecx 	 1 [23].

In a planar MC, we can define a photon effective mass as deriving from the curvature of
the photon dispersion at k = 0. In typical GaAs-based MCs, this effective mass is as small
as 3 × 10−5 times the free electron mass. We will see below that Maxwell equations for the
photon motion along the plane are equivalent to an effective Schrödinger equation where the
photon effective mass enters the kinetic term. Hence, similar considerations as for the exciton
COM motion apply. Given the very light mass, disorder components with correlation length
ξp � 100 nm have Ecp � 125 meV. A realistic upper bound for the energy fluctuation of the
photon mode is σp � 0.5 meV, deduced from the measured cavity-mode linewidth in modern
samples. The same scaling argument used for the exciton suggests that short and medium range
components of the MC disorder scarcely affect the in-plane motion of the photon. The long
range disorder component however is still relevant. In particular, given the large thickness of the
cavity slab, the fluctuations characterizing the two interfaces are expected to be uncorrelated,
differently from a QW, resulting in an overall fluctuation of the cavity thickness that will locally
affect the resonant frequency of the cavity mode.

Since the cavity-slab thickness varies very smoothly over lengths comparable to the
wavelength, we make the simplifying assumption that the electromagnetic field inside the cavity
is locally equal to that of an ideally planar cavity. We introduce the further approximation of
assuming a scalar electric field, thus neglecting the possible polarization vectors of the field and
the corresponding selection rules for the linear coupling to the exciton spin states [86, 87]. The
interplay between disorder and the vector nature of the polariton field was recently investigated
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both theoretically [88] and experimentally [81], and results in a rotation of the polarization
direction of the RRS field over a timescale of a few tens of picoseconds. Within our scalar
approximation, the electric field at position r = (R, z) is

E(r) = E(R) exp(ikz(R)z), (18)

where kz(R) is a position-dependent photon momentum along the z-direction. By neglecting
terms proportional to the gradient of kz(R), Maxwell equations give

∇2
ρE(R)+

(
ω2

c2
ε0 − k2

z (R)
)

E(R)+ 4π
ω2

c2
P(R) = 0, (19)

where ε0 is the spacer dielectric constant, while P(R) is the excitonic macroscopic polarization
field. If we consider energies close to the photon-mode energy at zero momentum h̄ωp, we
can expand the ω2 term in equation (19) and keep only the linear term in the expansion. The
equation can now be Fourier transformed to the time domain, resulting in a Schrödinger-like
equation for the electric field. We can expand k2

z (R) to the first order in the fluctuations

k2
z (R) ≈ k2

p + 2kpδkz(R), (20)

where kp = √
ε0ωp/c. We further define the photon effective mass Mp through the kinetic term

in the equation, as

h̄c2

ωpε0
= h̄2

2Mp
. (21)

We finally obtain

ih̄
∂

∂ t
E(R, t) = − h̄2

2Mp
∇2
ρE(R, t)+ Vp(R)E(R, t)− 2π

h̄ωp

ε0
P(R, t), (22)

where we have defined the effective disorder potential affecting the in-plane motion of the
photon

Vp(R) = h̄c√
ε0
δkz(R)

= − h̄ωp
δLc(R)
λ0 + LDBR

. (23)

Here, we have further related the potential energy fluctuations to the cavity thickness
fluctuations δLc(R) through the cavity thickness λ0 and the effective DBR penetration length
LDBR [89].

The exciton macroscopic polarization P(R, t) depends linearly on the exciton centre-of-
mass wavefunction ψ(R, t). This latter is governed by a Schrödinger equation that includes the
disorder potential acting on the QW exciton and the electric field as an external source [23, 2]. If
we approximate the linear exciton–photon coupling by a constant factor h̄�/2, which holds for
momentum components smaller than kp, this finally leads to two coupled Schrödinger equations
that we can rewrite as

ih̄
∂

∂ t
E(R, t) = h̄(ωp − iγp)E(R, t)− h̄2

2Mp
∇2
ρE(R, t)

+ Vp(R)E(R, t)+ h̄�

2
ψ(R, t), (24)

ih̄
∂

∂ t
ψ(R, t) = h̄(ωx − iγx)ψ(R, t) − h̄2

2Mx
∇2
ρψ(R, t)

+ Vx(R)ψ(R, t) + h̄�

2
E(R, t), (25)
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where h̄ωx is the ground exciton energy and we have introduced the damping rates γp and γx,
for the photon and exciton respectively. These rates describe phenomenologically the photon
escape rate from the MC and the non-radiative exciton lifetime.

Equations (24) and (25) model the polariton dynamics in the presence of disorder potentials
for both the exciton and the photon fields. The vacuum-field Rabi splitting is given by h̄� and
is used as an input parameter in the calculations. The main difficulty in treating equations (24)
and (25) is related to the large difference in the correlation length of the disorder potentials
acting on the exciton and photon components. A basic requirement for the numerical solution
of a time-dependent Schrödinger equation in real space is that the size of the simulation grid
step � is small enough to correctly sample the features of the disorder potential. In more
rigorous terms, the criterion is that the hopping energy T = h̄2/(2M�2) be much larger than
the two energy parameters Ec and σ , characterizing respectively the correlation length and
amplitude of the disorder potential. In the present problem, however, these two parameters
take different values for the exciton and the photon. While the two problems are likely to
be characterized by comparable values of σx and σp, the values of Ecx and Ecp will differ
considerably, due to the large difference in effective mass and correlation length. In particular,
Ecx is much larger than Ecp. Then, in order to correctly model the exciton kinetics, one needs
to choose a value of� reasonably smaller than 10 nm. At the same time, the simulation domain
must extend over several micrometres in order to model the photon propagation. This situation
calls for large scale simulations with thousands of grid points for each spatial dimension [12].
A possible way of overcoming this limitation is given by the remark that, for polaritons in the
strong coupling region, the in-plane kinetics is governed essentially by the photon effective
mass. Hence, taking the limit Mx → ∞ should leave the results in the strong coupling region
unchanged, while affecting the predictivity of the model in the exciton-like part of the lower
polariton branch. We call this approximation the local oscillator model, as the exciton part
of the dynamics is now described by a set of independent local oscillators at each simulation
site. In the absence of photon disorder, the validity of this approximation was suggested by
Whittaker [12], who showed that the influence of exciton disorder on the polaritons in the
strong coupling region is to all extents negligible, even in the case σx � ω.

In order to test the local oscillator model also in the presence of photon disorder, we
have carried out large scale numerical simulations of the polariton spectrum, comparing the
local-oscillator and full kinetic results. A simulation domain of 20 × 20 μm2 was sampled
on a 2048 × 2048 grid. Disorder potentials were assumed to be Gauss correlated in space,
with σx = 0.5 meV, ξx = 10 nm, σp = 0.3 meV, and ξp = 1 μm, corresponding to
currently available good quality systems. The Rabi splitting was h̄� = 3.8 meV, as for a
typical sample embedding a single GaAs QW, while zero exciton–cavity detuning was assumed.
Equations (24) and (25) were solved using the kernel-polynomial method [90]. This method
gives direct access to the spectrally resolved Green’s function. With respect to time-evolution
methods [12] it has the advantage of a rapid convergence, as the relative energy resolution
scales as N−3/2

m with the number Nm of momenta in the polynomial expansion, at the boundary
of the 8 T wide tight-binding spectral domain. We needed Nm = 160 000 to reach an energy
resolution better than the typical polariton homogeneous broadening of about 50 μeV. As
each momentum requires one application of the linear operator defined by the right-hand side
of (24) and (25), this number should be compared to the number of time-steps in a time-
evolution simulation, which is typically a few millions for the same energy resolution. As
initial state, we assumed an excitation pulse of 1 μm Gauss width. The simulation gives
access to the polariton spectral function, defined as the Fourier-transformed electric field as
Ik(ω) = |Ek(ω)|2. It corresponds to the field intensity that would be measured in a RRS
measurement.
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Figure 4. (a) Simulated polariton spectral function for a single realization of photon and exciton
disorder potentials (parameters as in the text). (b) The same as in (a) but without disorder.
Logarithmic scale over seven decades (from blue to red in the electronic version).

Figure 4(a) displays the simulated energy–momentum spectral function using a
logarithmic-intensity colour scale, for a single disorder realization and within the full kinetic
model. For comparison, in figure 4(b) we display the spectrum in the absence of disorder on
both components. Both plots clearly show the coarse momentum grid and the corresponding
energy discretization, which are due to having chosen a simulation area of only 20 × 20 μm2.
The ideal spectrum in figure 4(b) is characterized by a single Lorentzian resonance for each
polariton branch. On the other hand, speckles are clearly visible in the spectrum of the
disordered system in figure 4(a). Although the log-scale plot does not provide clear quantitative
information, still two important features can be guessed. First, both upper and lower polaritons
display a flat pattern at the bottom of the respective bands, extending over about ±1 μm−1.
This is a spectral signature of polariton localization. The numerical approach that we use does
not give direct access to the polariton wavefunctions, but we can guess that in this disorder
realization at least one well localized state of both upper and lower polariton exists. The
localization length can be inferred from the extension on the momentum axis and amounts to
a few micrometres. The second important feature to be noticed is the rather sharp spectrum
of the lower branch at large momentum, where the polariton is almost fully exciton-like.
Here, σx/Ecx ≈ 0.5 and motional narrowing results in an exciton inhomogeneous broadening
significantly smaller than the potential energy broadening σx.

In order to gain a better insight into these numerical results, we plot in figures 5(a) and (b)
the polariton spectrum taken at k = 0 and 2.2 μm−1 respectively. In each plot, four curves are
compared, corresponding (i) to the full simulation, (ii) to setting σx = 0 and σp = 0.3 meV,
(iii) to setting σx = 0.5 meV and σp = 0, and (iv) to the local oscillator limit in which both
disorder amplitudes are nonzero. At k = 0, the spectrum obtained by setting σx = 0 matches
very well to the full simulation. In particular, both the linewidths and the relative intensity
of upper and lower polaritons are well reproduced. We notice a small energy shift due to the
overall exciton localization energy and some speckles that are not present in the curve with
σx = 0. This first comparison suggests that exciton disorder does affect the polariton spectrum,
but only marginally, whereas the main spectral features are essentially determined by photon
disorder. Indeed, the spectrum obtained by setting σp = 0 differs more significantly from
the full simulation. It underestimates in particular the upper polariton linewidth while largely
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Figure 5. (a) Simulated polariton spectral function at k = 0 for a single disorder realization. Thick
(blue) line: σx = 0.5 and σp = 0.3 meV. Thin (red) line: σx = 0 and σp = 0.3 meV. Dashed (red)
line: σx = 0.5 meV and σp = 0. Dot–dashed (green) line: local oscillator model. (b) The same as
in (a) computed at k = (2.2, 0) μm−1.

overestimating its peak intensity. Finally, we notice that the local oscillator limit reproduces
fairly well the full result. Again, the upper polariton strength is overestimated, although less
dramatically than in the spectrum with σp = 0. This discrepancy is expected from the local
oscillator model where the bare exciton spectrum is fully symmetric around ω = 0. We now
turn to figure 5(b), corresponding to the spectrum at kx = 2.2 μm−1. Here, in contrast to the
previous case, the spectrum with σx = 0 differs significantly from the full simulation, which is
instead almost exactly reproduced by the simulation with σp = 0. This difference is expected,
as in this region photon and exciton modes are practically uncoupled. In particular, the lower
branch is almost fully exciton-like and disorder on the exciton component plays a major role.
Finally, we point out that the local-oscillator limit in figure 5(b) completely lacks the sharp
features in the spectral region of the lower polariton. The reason is again clear, as in this region
the exciton motional narrowing due to its finite mass is effective in determining the spectral
features. In conclusion, the comparison between the four different cases gives two important
indications. First, in the strong coupling region the main spectral features are determined almost
exclusively by the disorder acting on the photon component, whereas both disorder components
become important in the regions where exciton and photon modes are decoupled. Second, the
local oscillator limit is a very good approximation in the strong coupling region, where exciton
motional narrowing does not affect the polariton spectrum [7, 12].

To conclude this section, we take advantage of the simulations to study how the exciton
disorder affects the polariton spectrum for increasing disorder amplitude. In figure 6, we
display polariton spectra computed at k = 0 for increasing values of the exciton disorder
amplitude σx, while keeping σp = 0. The polariton linewidth is practically unaffected by
exciton disorder for σx < 1 meV. In particular, the lower polariton branch proves to be more
robust than the upper one to inhomogeneous broadening. Starting from σx = 1.5 meV, both
polariton peaks display a considerable inhomogeneous broadening of the same order as σx.
Eventually, polariton localization becomes the dominant mechanism and the Rabi splitting is
completely washed out for σx > 2 meV. The behaviour observed in this numerical simulation
essentially confirms the result that were obtained by Whittaker [12]. The conclusion of that
work was that the polariton inhomogeneous broadening originates almost only from multiple
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Figure 6. Simulated polariton spectral function at k = 0 for a single exciton disorder realization,
with σp = 0 and σx taking the values indicated in the plot.

scattering to more or less localized exciton states weakly coupled to the photon mode. For small
disorder, these states have a vanishing spectral density at the energy of the lower polariton
branch, thus explaining the robustness of this line to inhomogeneous broadening. Multiple
scattering of polaritons within the strong coupling region contributes only negligibly, due to the
very short spatial range of the QW disorder, thus also preventing polariton localization. Here,
by considering an additional source of disorder acting on the photon component, we might
generalize this statement as follows. Polariton multiple scattering within the strong coupling
region—and consequent polariton localization—are exclusively due to scattering by the long
range disorder acting on the photon component, provided the amplitude of exciton disorder
is significantly smaller than the vacuum-field Rabi splitting. Consistently, the inhomogeneous
broadening of the lower polariton line is mostly due to photon disorder.

3.3. Modelling polariton RRS and localization

In the previous section, we checked the validity of the local oscillator approximation. We can
now take advantage of this approximation for performing numerical simulations of large spatial
domains. For the numerical simulations, we recall that the step � of the simulation grid must
be chosen in such a way that the hopping energy T = h̄2/(2M�2) is much larger than any
other characteristic energy of the system. In contrast to the full simulation, now we are only
limited by the very small photon effective mass Mp, which results in very large values of T .
This makes it possible to use much larger values of the grid step, therefore giving access to
simulations over a very large spatial domain.

As an example, we now perform numerical simulations of the polariton optical response
within the local oscillator approximation, on a simulation domain of 400 × 400 μm2 sampled
on a 512 × 512 grid. The step � ≈ 780 nm is now large enough to make time-integration
simulations more advantageous than the kernel-polynomial method, as they give simultaneous
access to the RRS amplitude at all values of the in-plane momentum. We compare two
simulations, both assuming an exciton disorder amplitude σx = 0.2 meV, while the photon
disorder amplitude was chosen as σp = 0.2 meV and σp = 0 respectively. The photon disorder
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Figure 7. (a) Simulated polariton RRS intensity for a single realization of photon and exciton
disorder potentials having σx = 0.2 meV and σp = 0.2 meV (for the other parameters see the
text). (b) The same as in (a) but with σp = 0. For both plots, a logarithmic scale over five decades
(from blue to red in the electronic version) is used. (c) Simulated polariton localization length as a
function of energy.

was assumed to be Gauss correlated in space, with a correlation length ξp = 2 μm. The Rabi
splitting was again h̄� = 3.8 meV. For all simulations, the initial excitation is provided by a
Gauss pulse of 100 fs duration and 1 μm diameter, centred at ω = 0. In this way, the Fourier-
transformed electric field amplitude Ek(ω) models the RRS field as a function of momentum
and frequency.

Figures 7(a) and (b) show the simulated RRS intensity as a function of in-plane momentum
and energy. In figure 7(a) the case with σx = σp = 0.2 meV is displayed, while panel
(b) displays the case with σx = 0.2 meV and σp = 0. Both images are characterized
by a fine speckle pattern resulting from the exciton disorder component. In panel (a), the
spectral broadening of both lower and upper polaritons in the strong coupling region is however
significantly larger than in panel (b), as a result of the photon disorder. This confirms what
already observed in the previous section, namely that polaritons are almost exclusively affected
by disorder of the cavity structure, whereas QW disorder has mainly influence on the exciton-
like part of the dispersion only. By comparing figures 7(a) and (b), we also notice that
the first spectrum is rigidly shifted to slightly lower energy with respect to the second one.
Correspondingly, in panel (a) we also notice the presence of several sharp spectral features,
forming a flat energy–momentum pattern, at the bottom of both the upper and the lower
polariton branches, that are instead absent in panel (b). As already pointed out in the previous
section, both are clear signatures of polariton spatial localization due to the long range photon
disorder. In particular, the flat features in the energy–momentum RRS plots correspond to
discrete polariton eigenstates that are localized via their photon component. The rigid energy
shift corresponds to the localization energy in the specific realization of the photon disorder
used for the simulation. Apart from the much better energy and momentum resolution and
finer speckle pattern, the only difference between figures 7(a) and 4(a) resides in the exciton-
like part of the lower polariton branch, whose spectral broadening is overestimated by the local
oscillator approximation.

The simulation over such a large spatial domain will make it possible to evaluate
the polariton localization length under different assumptions for the exciton and photon
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components of disorder. This analysis is however beyond the scope of the present review.
For the parameters used in the previous example, we can estimate the localization length from
the momentum spread of the RRS spectral pattern. In the case with nonzero photon disorder
amplitude, the flat features at the bottom of both polariton branches correspond to a localization
length of about 10 μm, in agreement with experimental estimates on a GaAs/AlAs sample with
comparable interface quality [5, 84]. The case with only exciton disorder, on the other hand,
gives 50 μm as a strict lower bound for the polariton localization length at the band bottom.

4. Conclusions

We have presented an overview of the research on disorder effects on excitons in QWs and
polaritons in MCs. As a general rule, the most direct consequences of disorder are the
inhomogeneous spectral broadening and the RRS in the optical response. Microscopically,
disorder in two dimensions is expected to give rise to spatial localization of the COM motion. In
the case of QW excitons, COM localization was the object of a careful analysis, both theoretical
and experimental. The effect of disorder on polaritons, on the other hand, awaits a more detailed
analysis. The existing studies have mainly focused on the effect of QW disorder. The effect
of disorder in the dielectric structure of the MC was pointed out by some recent experimental
studies but never investigated in detail. Moreover, due to the very light effective mass of the
polariton quasi-particle at the bottom of the polariton dispersion, the idea that localized states
of polaritons might arise was overlooked by most studies.

In the second part of this work, we have presented an original study of disorder on
polaritons, based on a model that accounts for QW and MC disorder components on equal
footing. Preliminary numerical results suggest that polaritons are mostly affected by the long
range photon component of disorder, which is responsible for RRS and polariton localization.
The localization length of polaritons, predicted for typical parameters of today’s semiconductor
heterostructures, ranges from a few micrometres to a few tens of micrometres at the bottom of
the polariton band, in agreement with the few existing experimental studies.

Localization is very important in view of the recent experiments aimed at achieving Bose–
Einstein condensation of QW excitons [91–94] or MC polaritons [95, 96] in two-dimensional
systems. In a Bose gas in two dimensions, conventional Bose–Einstein condensation with
occurrence of off-diagonal long range order cannot take place, as stated by the Hohenberg–
Mermin–Wagner theorem [97]. Theory instead predicts the Berezinskii–Kosterlitz–Thouless
transition [98, 99] from a disordered phase with spontaneous formation of vortices to an
ordered phase called a quasi-condensate, characterized by a Bogolubov spectrum of collective
excitations and a polynomial decay of long range spatial correlations [100]. If however the
Bose gas is trapped [100–104] or subject to disorder [105], then a genuine Bose–Einstein
condensate can be expected, provided the localization occurs over a sufficiently small scale.
With increasing size of the condensate, on the other hand, a crossover from genuine Bose–
Einstein condensation to a Berezinskii–Kosterlitz–Thouless behaviour should take place. A
thorough characterization of exciton and polariton localization and of its influence on the phase
transition is then a necessary step for understanding the nature of these collective phenomena.
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